Recent Publications of IGA members


Refereed publications (2017) :

  1. V. Mathai and R.B. Melrose, Geometry of Pseudodifferential algebra bundles and Fourier Integral Operators, Duke Math. J., 166 no.10 (2017) 1859-1922, [1210.0990]
  2. V. Mathai and J. Rosenberg, Group dualities, T-dualities, and twisted K-theory, J. Lond. Math. Soc., (published online) 23 pp, [1603.00969]
  3. K. Hannabuss, V. Mathai, G. C. Thiang, T-duality simplifies bulk-boundary correspondence: the noncommutative case, Lett. Math. Phys., (published online) 39 pp. [1603.00116]
  4. V. Mathai and G. C. Thiang, Differential topology of semimetals, Commun. Math. Phys., 355, no. 2,(2017) 561-602. [1611.08961]
  5. V. Mathai and G. C. Thiang, Global topology of Weyl semimetals and Fermi arcs, J. Phys. A: Math. Theor. (Letter) 50 no. 11 (2017) 11LT01, 11pp [1607.02242]
    publicity at JPhys+
  6. P. Hochs, V. Mathai, Quantising proper actions on Spinc-manifolds, Asian J. Math., 21 no. 4 (2017) 631-686, [1408.0085]
  7. P. Hochs and H. Wang, A fixed point theorem on noncompact manifolds, Ann. K-theory, (to appear), [1512.07812]
  8. P. Hochs and H. Wang, A fixed point formula and Harish-Chandra's character formula, Proc. London Math. Soc., (published online), [1701.08479].
  9. P. Hochs, J. Kaad and A. Schemaitat, Algebraic K-theory and a semi-finite Fuglede-Kadison determinant, Ann. K-theory, (to appear), [1608.07395]
  10. P. Hochs and Y. Song, An equivariant index for proper actions I, J. Funct. Anal., 272 no. 2, (2017) 661-704 [1512.07575]
  11. P. Hochs and Y. Song, Equivariant indices of Spinc-Dirac operators for proper moment maps, Duke Math. J., 166, no. 6 (2017), 1125-1178, [1503.00801].
  12. P. Hochs and Y. Song, On the Vergne conjecture, Arch. Math., 108, no. 1 (2017) 99-112 [1509.02425].
  13. M. Murray, D. M. Roberts, C. Wockel, Quasi-periodic paths and a string 2-group model from the free loop group, J. Lie Theory, 27 (2017), No. 4, 1151-1177. [arXiv:1702.01514]
  14. M. Murray, D. M. Roberts, D. Stevenson, R. Vozzo, Equivariant bundle gerbes, Adv. Theor. Math. Phys., 21 (2017) no. 4, 921 - 975. [arXiv:1506.07931]
  15. D. Stevenson, Covariant model structures and simplicial localization, North-Western Eur. J. Math., 2017; 3:141-202
  16. A. Alarcon, F. Larusson, Representing de Rham cohomology classes on an open Riemann surface by holomorphic forms, Int. J. Math. 28 no. 9 (2017) 1740004, 12pp.
  17. F. Larusson and T. Truong, Algebraic subellipticity and dominability of blow-ups of affine spaces, Doc. Math. 22 (2017) 151-163.
  18. F. Forstneric and F. Larusson, The parametric h-principle for minimal surfaces in R^n and null curves in C^n, Comm. Anal. Geom. (to appear).
  19. F. Forstneric and F. Larusson, The Oka principle for holomorphic Legendrian curves in C^{2n+1}, Math. Zeit (published online) 21 pp.
  20. F. Kutzschebauch, F. Larusson, and G. W. Schwarz, Homotopy principles for equivariant isomorphisms, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7251-7300.
  21. F. Kutzschebauch, F. Larusson, and G. W. Schwarz, Sufficient conditions for holomorphic linearisation, Transform. Groups 22, no. 2 (2017) 475-485.
  22. T. Leistner, P. Nurowski and K. Sagerschnig, New relations between G_2-geometries in dimensions 5 and 7, Int. J. Math. (published online) 29 pp. [1601.03979]
  23. T. Leistner and A. Lischewski, The ambient obstruction tensor and conformal holonomy, Pac. J. Math. 290 (2017), No. 2, 403-436 [1511.07214]
  24. T. Leistner and A. Lischewski, Hyperbolic evolution equations, Lorentzian holonomy, and Riemannian generalised Killing spinors, J. Geomet. Anal. (published online) 50 pp. [1702.01951]
  25. S. Barwick, W-A. Jackson, T. Penttila, New families of strongly regular graphs. Australas. J. Combin. 67 (2017), 486-507.
  26. W. Globke, Y. Nikolayevsky, Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension, Differ. Geom. Appl. 54, Part B (2017) 475-489
  27. O. Baues, W. Globke, Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, Int. Math. Res. Not. (published online) [arXiv:1507.02575]
  28. D. Burde, W. Globke, Etale representations for reductive algebraic groups with one-dimensional center, J. Algebra, 487, 2017, 200-216.
  29. D. Baraglia, Monodromy of the SL(n) and GL(n) Hitchin fibrations, Math. Annalen (published online) 36 pp.
  30. D. Baraglia, L. Schaposnik, Monodromy of rank 2 twisted Hitchin systems and real character varieties. Trans. Amer. Math. Soc. (published online).
  31. D. Baraglia; P. Hekmati, Arithmetic of singular character varieties and their E-polynomials, Proc. London Math. Soc. 114 no. 2 (2017) 293-332. [1602.06996]
  32. R. Ponge, H. Wang, Noncommutative geometry and conformal geometry I. Local index formula and conformal invariants. J. Noncommut. Geom. (to appear). [1411.3701]
  33. K. F. Chao and H. Wang: Langlands Functorality in K-theory for $C^*$-algebras. I. Base Change, J. Noncommut. Geom. 11 no. 11 (2017) 1001-1036.
  34. Tuyen Trung Truong, Automorphisms of blowups of threefolds being Fano or having Picard number 1, Ergodic Theory Dyn. Syst., 37, no. 7 (2017) 2255-2275 [1501.01515]
  35. Tuyen Trung Truong, Comments on Sampson's approach toward Hodge conjecture on Abelian varieties, Ann. Mat. Pura Appl. 196, No. 2, (2017) 533-538. [1409.0495]
  36. G.C. Thiang, K. Sato, K. Gomi, Fu-Kane-Mele monopoles in semimetals, Nuc. Phys. B, Section B 923C (2017) pp. 107-125. [arXiv:1705.06657]
  37. Alex Chi-Kwong Fok, Equivariant twisted Real K-theory of compact Lie groups, J. Geom. Phys. (to appear) 36 pp. [arXiv:1503.00957]

Refereed publications (2016) :

  1. K. Hannabuss, V. Mathai, G. C. Thiang, T-duality trivializes bulk-boundary correspondence: the parametrised case, Adv. Theor. Math. Phys., 20 no. 5 (2016) 1193-1226, [1510.04785]
  2. V. Mathai, G.C. Thiang, T-duality simplifies bulk-boundary correspondence: some higher dimensional cases, Ann. Henri Poincare, 17 no. 12 (2016) 3399-3424, [1506.04492]
  3. V. Mathai, G.C. Thiang, T-duality simplifies bulk-boundary correspondence, Commun. Math. Phys., 345 no. 2, (2016) 675-701 , [1505.05250]
  4. P. Hochs, V. Mathai, Spin manifolds and proper group actions, Adv. Math., 292 (2016) 1-10, [1411.0781]
  5. P. Hochs, V. Mathai, Formal geometric quantisation for proper actions, J. Homotopy Relat. Struct. 11, no.3, (2016) 409-424, [1403.6542]
  6. P. Hochs and Y. Song, An equivariant index for proper actions III: the invariant and discrete series indices, Differ. Geom. Appl. 49 (2016) 1-22.
  7. M. Dunajski and M.G. Eastwood, Metrisability of three-dimensional path geometries, Eur. Jour. Math, 2, no. 3 (2016) 809-834
  8. M.G. Eastwood and K. Neusser, A canonical connection on sub-Riemannian contact manifolds. Arch. Math. (Brno) 52 (2016), no. 5, 277-289.
  9. R. Larkang and F. Larusson, Extending holomorphic maps from Stein manifolds into affine toric varieties, Proc. Amer. Math. Soc. 144 (2016) 4613-4626. .
  10. W. Globke, T. Leistner, Locally homogeneous pp-waves, J. Geom. Phys., 108 (2016) 83-101
  11. H. Baum, T. Leistner and A. Lischewski, Cauchy problems for Lorentzian manifolds with special holonomy, Differ. Geom. Appl., 45 (2016) 43-66, [arxiv:1411.3059]
  12. T. Leistner and D. Schliebner, Completeness of compact Lorentzian manifolds with Abelian holonomy, Math. Ann. 364, no. 3, (2016) 1469-1503, [1306.0120].
  13. S. Barwick and W. Jackson; Characterising pointsets in PG(4,q) that correspond to conics. Des. Codes Cryptogr. 80 (2016), no. 2, 317-332.
  14. S. Barwick and W. Jackson, Exterior splashes and linear sets of rank 3. Discrete Math. 339 (2016), no. 5, 1613-1623
  15. P. Hekmati, J. Mickelsson, Projective Families of Dirac Operators on a Banach Lie Groupoid, J. Noncommut. Geom., 10, no. 1, (2016) 1-23. [1404.1754]
  16. D. Baraglia; P. Hekmati, Moduli Spaces of Contact Instantons, Adv.Math., 294 (2016) pp. 562-595.
  17. D. Baraglia; Classification of the automorphism and isometry groups of Higgs bundle moduli spaces, Proc. London Math. Soc. 112 no. 3 (2016), no. 5, 827-854. [1411.2228]
  18. D. Baraglia; I. Biswas; L. Schaposnik, Automorphisms of C*-moduli spaces associated to a Riemann surface. SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), 007, 14 pages.
  19. D. Baraglia, L. P. Schaposnik, Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys. 20 no. 3 (2016) 525-551. [1309.1195]
  20. D. M. Roberts, D. Stevenson, Simplicial principal bundles in parameterized spaces, New York J. Math. 22 (2016) 405-440. [1203.2460]
  21. D. M. Roberts, A bigroupoid's topology (or, Topologising the homotopy bigroupoid of a space). J. Homotopy Relat. Struct. 11, no.4, (2016) 923–942, [1302.7019]
  22. D. M. Roberts, On certain 2-categories admitting localisation by bicategories of fractions, Appl. Categor. Struct., 24 no. 4 (2016) 373-384. [1402.7108]
  23. V. Bardakov, S. Jablan, H. Wang, Monoid and group of pseudo braids. J. Knot Theory Ramifications 25 (2016), no. 9, 1641002, 13 pp.
  24. B.L. Wang and H. Wang, Localized Index and $L^2$-Lefschetz fixed point formula for orbifolds, J. Diff. Geom. , 102 no.2, (2016) 285 - 349. [1307.2088].
  25. R. Ponge, H. Wang, Index map, $\sigma$-connections, and Connes-Chern character in the setting of twisted spectral triples. Kyoto J. of Math. 56, no. 2 (2016), 347-399. [1310.6131]
  26. R. Ponge, H. Wang, Noncommutative geometry and conformal geometry II. Connes-Chern character and the local equivariant index theorem. J. Noncommut. Geom. 10, no. 1, (2016) 303-374. [1411.3703]
  27. Guo Chuan Thiang, On the K-theoretic classification of topological phases of matter, Ann. Henri Poincare 17, no. 4,(2016) 757-794, [1406.7366]
  28. Tuyen Trung Truong, Some dynamical properties of pseudo-automorphisms in dimension 3, Trans. Amer. Math. Soc. 368 (2016), no 1, 727-753.


Refereed publications (2015) :

  1. V. Mathai and Guo Chuan Thiang, T-duality and topological insulators, J. Phys. A: Math. Theor. (Fast Track Communication) 48 (2015) no.42, 42FT02, 10pp, [1503.01206]
    publicity at IOPSCIENCE
  2. M-T. Benameur and V. Mathai, Spectral sections, twisted rho invariants and positive scalar curvature, J. Noncommut. Geom., 9, no. 3, (2015) 821-850, [1309.5746]
  3. A. Linshaw and V. Mathai, Twisted Chiral De Rham Complex, Generalized Geometry, and T-duality, Commun. Math. Phys., 339, No. 2, (2015) 663-697, [1412.0166]
  4. V.Mathai and H.Sati, Higher abelian gauge theory associated to gerbes on noncommutative deformed M5-branes and S-duality, J. Geometry and Physics 92 (2015) 240-251, [1404.2257]
  5. P.Bouwknegt, J.Evslin and V.Mathai, Spherical T-duality, Commun. Math. Phys., 337, No. 2, (2015) 909-954. [1405.5844]
  6. P.Bouwknegt, J.Evslin and V.Mathai, Spherical T-duality II: An infinity of spherical T-duals for non-principal SU(2)-bundles, J. Geometry and Physics, 92 (2015) 46-54, [1409.1296]
  7. F. Han, V. Mathai, Exotic twisted equivariant cohomology of loop spaces, twisted Bismut-Chern character and T-duality, Commun. Math. Phys. 337, No. 1, (2015) 127-150. [1405.1320]
  8. P. Hochs, V. Mathai, Geometric quantization and families of inner products, Adv. Math. 282 (2015) 362-426, [1309.6760]
  9. P. Hochs, Quantisation of presymplectic manifolds, K-theory and group representations, Proc. Amer. Math. Soc. 143 (2015), 2675-2692 [1211.0107]
  10. P. Baird and M.G. Eastwood, On functions with a conjugate, Ann. Inst. Fourier 65 (2015) 277-314.
  11. F. Larusson, Absolute neighbourhood retracts and spaces of holomorphic maps from Stein manifolds to Oka manifolds, Proc. Amer. Math. Soc. 143 (2015) 1159-1167. [1306.4390]
  12. F. Kutzschebauch, F. Larusson, and G.W. Schwarz, An Oka principle for equivariant isomorphisms, J. fur die reine und angewandte Mathematik (Crelle's J.) 706 (2015), 193-214. [1303.4779]
  13. T. Nikolaus, U. Schreiber and D. Stevenson, Principal ∞-Bundles - General Theory, J. Homotopy Relat. Struct. 10, (2015) no. 4, 749-801
  14. T. Nikolaus, U. Schreiber and D. Stevenson, Principal ∞-Bundles - Present ations, J. Homotopy Relat. Struct. 10, (2015) no. 3, 565-622
  15. S. Barwick and Wen-Ai Jackson, An investigation of the tangent splash of a subplane of PG(2,q3). Des. Codes Cryptogr. 76 (2015), no. 3, 451-468.
  16. S. Barwick and Wen-Ai Jackson, A characterization of translation ovals in finite even order planes. Finite Fields Appl. 33 (2015), 37-52. [1305.6673]
  17. S. Barwick and Wen-Ai Jackson, The tangent splash in PG(6,q). Discrete Math. 338 (2015), no. 7, 1178-1190. [1305.6674]
  18. A. Hanysz, Holomorphic flexibility properties of the space of cubic rational maps, J. Geom. Analysis, 25, No. 3, (2015) 1620-1649. [1211.0765]
  19. D. Baraglia, Topological T-duality for torus bundles with monodromy, Rev. Math. Phys. 27, No. 3 (2015), 1550008, 55 pages [1201.1731]
  20. D. Baraglia, Cyclic Higgs bundles and the affine Toda equations, Geometriae Dedicata, 174 (2015), pp 25-42. [1011.6421]
  21. D. Baraglia, P. Hekmati, Transitive Courant Algebroids, String Structures and T-duality, Adv. Theor. Math. Phys. 19 (2015) 613-672. [1308.5159]
  22. D. Baraglia; P. Hekmati, A Fourier-Mukai approach to the K-theory of compact Lie groups. Adv. Math., 269 (2015), 335-345. [1406.3993]
  23. P. Hekmati, M. K. Murray, V. S. Schlegel, R. F. Vozzo, A Geometric Model for Odd Differential K-theory, Diff. Geom. and applications, 40 (2015) 123-158, [1309.2834]
  24. D. M. Roberts, A topological fibrewise fundamental groupoid, Homology, Homotopy and Applications, 17 No. 2 (2015) 37-51 [1411.5779]
  25. D. M. Roberts, The weak choice principle WISC may fail in the category of sets, Studia Logica 103, No. 5, (2015) 1005-1017. [1311.3074].
  26. R. Ponge, H. Wang, Noncommutative geometry and conformal geometry III: Vafa-Witten inequality and Poincare duality. Adv. Math., 272 (2015) 761-819. [1310.6138].
  27. Andrew Hassell and Melissa Tacy, Improvement of eigenfunction estimates on manifolds of nonpositive curvature, Forum Mathematicum. 27, no. 3 (2015) 1435-1451.
  28. Xiaolong Han and Melissa Tacy, Sharp norm estimates of layer potential and operators at high frequency, J. Funct. Anal., 269 (2015), no. 9, 2890-2926. [arXiv:1403.6576]
  29. Guo Chuan Thiang, Topological phases: isomorphism, homotopy and K-theory, Int. J. Geom. Methods Mod. Phys. 12, 1550098 (2015) 14 pp, [1412.4191]
  30. A. Lischewski, Conformal superalgebras via tractor calculus, Classical and Quantum Gravity, 32 no.1 (2015) 015020
  31. A. Lischewski, Supersymmetric gauge theory on a class of cocalibrated G 2 -structures, Classical and Quantum Gravity, 32 no.11 (2015) 115003
  32. A. Lischewski, Reducible conformal holonomy in any metric signature and application to twistor spinors in low dimension, Differential Geometry and its Applications, 40 (2015) Pages 252-268.
  33. A. Lischewski, Charged conformal Killing spinors, Journal of Mathematical Physics, 56, 013510 (2015)

Refereed publications (2014) :

  1. V. Mathai and J. Rosenberg, T-duality for circle bundles via noncommutative geometry, Adv. Theor. Math. Phys., 18, no. 6 (2014) 1437-1462, [1306.4198]
  2. M-T. Benameur, V. Mathai, Index type invariants for twisted signature complexes and homotopy invariance, Math. Proc. Cambridge Philos. Soc., 156 no.3 (2014) 473-503, [1202.0272]
  3. F. Forstneric, F. Larusson, Oka properties of groups of holomorphic and algebraic automorphisms of complex affine space, Mathematical Research Letters 21 (2014) 1047-1067.
  4. F. Forstneric, F. Larusson, Holomorphic flexibility properties of compact complex surfaces, Int. Math. Res. Not. (2014), no. 13, 3714-3734 [1207.4838]
  5. F. Larusson, T. Ritter, Proper holomorphic immersions in homotopy classes of maps from finitely connected planar domains into CxC*, Ind. U. Math. J. 63 (2014), no. 2, 367-383. [1209.4430]
  6. S.G. Barwick and W.-A. Jackson, A Characterisation of Tangent Subplanes of PG(2,q^3). Des. Codes Cryptogr., (2014) 71 Issue 3, 541-545, [1204.4953]
  7. J. Alt, A. J. Di Scala, T. Leistner, Conformal holonomy, symmetric spaces, and skew symmetric torsion, Differential Geom. Appl., 33 (2014), suppl., 4-43. [1208.2191]
  8. H. Baum, K. Larz, T. Leistner, On the full holonomy group of special Lorentzian manifolds, Math. Z., 277 (2014), no. 3-4, 797-828, [1204.5657]
  9. A. Hanysz, Oka properties of some hypersurface complements, Proc. Amer. Math. Soc. 142 (2014), 483-496. [1111.6655]
  10. D. Baraglia, L. P. Schaposnik, Higgs bundles and (A,B,A)-branes, Commun. Math. Phys. 331 (2014), no. 3, 1271-1300. [1305.4638]
  11. D. Baraglia, Variation of Hodge structure for generalized complex manifolds, Differential Geom. Appl. 36 (2014), 98-133. [1205.0240]
  12. D. Baraglia, Topological T-duality for general circle bundles, Pure Appl. Math. Q. 10 (2014) no. 3 pp. 367-438. [1105.0290]
  13. D. Baraglia, A Coboundary Morphism For The Grothendieck Spectral Sequence, Appl. Categ. Structures, 22 (2014), no. 1, 269-288. [1112.6295]
  14. W. Globke, On the Geometry of Flat Pseudo-Riemannian Homogeneous Spaces, Israel J. Math. 202 (2014) 255-274, [1211.1111]
  15. W. Globke, A Supplement to the Classification of Flat Homogeneous Spaces of Signature (m,2), New York J. Math., 20 (2014) 441-446 [1312.2210]
  16. H. Wang, L^2-index formula for proper cocompact group actions, J. Noncommutative Geometry, 8(2), 2014, 393-432.

Refereed publications (2013) :

  1. M-T. Benameur, V. Mathai, Conformal invariants of twisted Dirac operators and positive scalar curvature, J. Geom. Phys, 70 (2013) 39-47, [1210.0301] Erratum
  2. R. Dey, V. Mathai, Holomorphic Quillen determinant line bundles on integral compact Kahler manifolds, The Quarterly J. Math., Quillen memorial issue, 64 (2013), 785-794, [1202.5213]
  3. P. Hekmati, M. K. Murray, D. Stevenson and R. Vozzo, The Faddeev-Mickelsson anomaly and lifting bundle gerbes, Commun. Math. Phys. 319 no. 2 (2013) 379-393, [1112.1752]
  4. J. C. Hurtubise and M. K. Murray, Loop groups and holomorphic bundles, The Quarterly J. Math., 64, no. 1 (2013) 189-220, [0812.3684v1]
  5. F. Larusson, E. A. Poletsky, Plurisubharmonic subextensions as envelopes of disc functionals, Mich. Math. J. 62 (2013), no. 3, 551-565, [1201.5875]
  6. D. M. Roberts The universal simplicial bundle is a simplicial group, New York J. Math. 19 (2013) 51-60 [1204.4886]
  7. T. Ritter, A strong Oka principle for embeddings of some planar domains into CxC*, J. Geom. Anal. 23, no. 2, (2013) 571-597, [1011.4116]
  8. T. Ritter, Acyclic embeddings of open Riemann surfaces into new examples of elliptic manifolds, Proc. Amer. Math. Soc. 141 (2013), 597-603, [1107.0102]
  9. W. Globke, Holonomy Groups of Complete Flat Pseudo-Riemannian Homogeneous Spaces, Adv. Math. 240 (2013) 88-105 [1205.3285]
  10. D. Baraglia, Conformal Courant algebroids and orientifold T-duality, Int. J. Geom. Methods in Modern Phys, 10, no 2 (2013), 1250084.
  11. D. Baraglia, Introduction to Generalized Geometry and T-duality, in Open Problems and Surveys of Contemporary Mathematics SMM 6, pp 45-97 (2013).

Refereed publications (2012) :

  1. P. Hekmati and V. Mathai, T-duality of current algebras and their quantization, Contemporary Mathematics, 584 (2012) 17-38, [1203.1709]
  2. K. Hannabuss, V. Mathai. Nonassociative strict deformation quantization of C*-algebras and nonassociative torus bundles. Lett. Math. Phys., 102 no.1, (2012) 107-123, [1012.2274]
  3. V. Mathai and S. Wu, Topology and Flux of T-Dual Manifolds with Circle Actions, Commun. Math. Phys. 316 (2012) 279-286. [1108.5045]
  4. P. Bouwknegt, V. Mathai and S. Wu, Bundle gerbes and moduli spaces, J. Geom. Phys., 62 no.1, (2012) 1-10, [1107.3687]
  5. P. Hekmati, M. K. Murray and R. Vozzo, The general caloron correspondence, J. Geom. Phys., 62, no.2, (2012), 224-241. [1105.0805]
  6. M. K. Murray, D. M. Roberts, D. Stevenson, On the existence of bibundles, Proc. London Math. Soc., 105 no. 6 (2012), 1290-1314. [1102.4388]
  7. F. Larusson, Deformations of Oka manifolds, Mathematische Zeitschrift, 272, No. 3-4 (2012), 1051-1058, [1106.5300]
  8. S.G. Barwick and D.J. Marshall. Conics and multiple derivation. Discrete Mathematics, 312 (2012) 1623--1632.
  9. S.G. Barwick and W.-A. Jackson. Sublines and subplanes of PG(2,q^3) in the Bruck-Bose representation in PG(6,q), Finite fields and their applications. 18 no.1 (2012) 93-107.
  10. T. Leistner, P. Nurowski, Conformal structures with exceptional ambient metrics, Ann. Sc. Norm. Super. Pisa Cl. Sci. XI, issue 2 (2012), 407-436, [0904.0186] .
  11. T. Leistner, P. Nurowski, Conformal pure radiation with parallel rays, Classical and Quantum Gravity 29 (2012) 055007 [1107.1675]
  12. D. M. Roberts Internal categories, anafunctors and localisations, 33 pages, Theory and Application of Categories, Vol. 26, 2012, No. 29, pp 788-829 [1101.2363]
  13. O. Baues and W. Globke, Flat pseudo-Riemannian homogeneous spaces with non-abelian holonomy group, Proc. Amer. Math. Soc. 140 (2012), 2479-2488.
  14. D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys. 62 (2012) 903-934.
  15. D. Baraglia, Topological T-duality with monodromy, Proceedings of Symposia in Pure Mathematics, 85 (2012), 293-302.

Refereed publications (2011) :

  1. V. Mathai and S.Wu, Analytic torsion for twisted de Rham complexes, J. Differential Geometry, 88 (2011) 297-332, [0810.4204]
  2. S. Mahanta, V. Mathai, Operator algebra quantum homogeneous spaces of universal gauge groups, Lett. Math. Phys., 97 (2011) 263-277, [1012.5893]
  3. K. Hannabuss, V. Mathai. Parametrised strict deformation quantization of C*-bundles and Hilbert C*-modules, J. Aust. Maths. Soc. 90 no. 01 (2011) 25-38. [1007.4696]
  4. V. Mathai, Siye Wu, Analytic torsion of Z2-graded elliptic complexes, Contemporary Mathematics, 546 (2011) 199-212. [1001.3212]
  5. V. Mathai and J. Rosenberg, A noncommutative sigma-model, J. Noncommutative Geometry, 5 no 2 (2011) 265-294, [0903.4241]
  6. M. K. Murray, D. Stevenson, A note on bundle gerbes and infinite-dimensionality, J. Aust. Maths. Soc. 90 no. 01 (2011) 81-92, [1007.4922]
  7. S.G. Barwick, C.T. Quinn and W.-A. Jackson. Conics and caps, J. Geom. 100 (2011) 15-28.
  8. F. Forstneric, F. Larusson, Survey of Oka theory, New York J. of Math. 17a (2011), 1-28. [1009.1934]
  9. T. Leistner, A. J. Di Scala, Connected subgroups of SO(2,n) acting irreducibly on $\mathbb{R}^{2,n}$, Israel Journal of Mathematics, 182 (2011), 103-121. [0806.2586]
  10. V. Cortes, T. Leistner, L. Schafer, F. Schulte-Hengesbach, Half-flat Structures and Special Holonomy, Proceedings of the London Mathematical Society (3) 102 (2011) 113-158, [0907.1222] .
  11. R. Vozzo, Universal string classes and equivariant cohomology, J. Aust. Maths. Soc. 90 no. 01 (2011) 109-127. [1005.4243]
  12. S. Mahanta, Higher nonunital Quillen K'-theory, KK-dualities and applications to topological T-dualities, J. Geom. Phys. 61 (2011) 875-889.
  13. A. De Sole, P. Hekmati, V. Kac, Calculus structure on the Lie conformal algebra complex and the variational complex, J. Math. Phys. 2 053510 (2011), 35 pages [1007.3707] .

Refereed publications (2010) :

  1. V. Mathai, W. Zhang, Geometric quantization for proper actions, Advances in Mathematics, 225 no.3 (2010) 1224--1247 [0806.3138v2]
  2. K. Hannabuss, V. Mathai, Noncommutative principal torus bundles via parametrised strict deformation quantization, AMS Proceedings of Symposia in Pure Mathematics, 81 (2010) 133-148, [0911.1886]
  3. V. Mathai, S. Wu, Twisted Analytic Torsion, Science China Mathematics, 53 no. 3 (2010) 555-563 [0912.2184]
  4. P. Bouwknegt, K. Hannabuss, V. Mathai, C*-algebras in tensor categories, Clay Mathematics Proceedings, 12 (2010) 127-165. [math.QA/0702802]
  5. M. K. Murray, An Introduction to Bundle Gerbes, in "The Many Facets of Geometry: A Tribute to Nigel Hitchin", Edited by Oscar Garcia-Prada, Jean Pierre Bourguignon, Simon Salamon, Oxford University Press (2010) 237-260, [0712.1651v3]
  6. M. K. Murray and R. Vozzo, The caloron correspondence and higher string classes for loop groups, J. Geometry and Physics, 60, no. 9 (2010) 1235-1250, [0911.3464]
  7. M. K. Murray and R. Vozzo, Circle actions, central extensions and string structures, International Journal of Geometric Methods in Modern Physics 7, no. 6 (2010) 1065-1092, [1004.0779]
  8. F. Larusson, What is an Oka manifold? Notices of the American Mathematical Society, 57 (2010) 50-52.
  9. F. Larusson, Applications of a parametric Oka principle for liftings, in Complex Analysis, pages 205-211, a refereed volume in honour of Linda P. Rothschild, Trends in Mathematics series, Birkhauser, 2010. [0901.4388]
  10. A. Galaev, T. Leistner, On the local structure of Lorentzian Einstein manifolds with parallel null line, Classical and Quantum Gravity 27 (2010) 225003 (16pp) [0912.3400] .
  11. T. Leistner, P. Nurowski, Ambient metrics for $n$-dimensional $pp$-waves, Commun. Math. Phys., 296, no. 3 (2010) 881-898. [0810.2903]
  12. A. Galaev, T. Leistner, Recent developments in pseudo-Riemannian holonomy theory, in Handbook of Pseudo Riemannian Geometry, Institut de Recherche Mathematique Avancee Lectures in Mathematics and Theoretical Physics, Vol. 16 (2010): 581-629.
  13. A. J. Di Scala, T. Leistner, T. Neukirchner, Geometric applications of irreducible representations of Lie groups, in Handbook of Pseudo Riemannian Geometry, Institut de Recherche Mathematique Avancee Lectures in Mathematics and Theoretical Physics, Vol. 16 (2010): 629-652. [math/0507047]
  14. P. Hekmati, Integrability Criterion for Abelian Extensions of Lie Groups, Proc. Amer. Math. Soc. 138 (2010), 4137-4148, [0611431] .
  15. P. Hekmati and J. Mickelsson, Fractional Loop Group and Twisted K-theory, Commun. Math. Phys. 299 (2010), no. 3, 741-763, [0801.2522] .

Refereed publications (2009) :

  1. V. Mathai, R.B. Melrose, I.M. Singer, The index of projective families of elliptic operators: the decomposable case, Asterisque, 328 (2009) 255-296, [0809.0028]
  2. P. Bouwknegt, V. Mathai, T-Duality as a Duality of Loop Group Bundles, J. Physics A: Math. Theor. (Fast Track Communications), 42 no.16 (2009) 162001, 8 pages, [0902.4341]
  3. R. Green, V. Mathai, Harmonic Cheeger-Simons characters with applications, J. Geometry and Physics, 59 no.5 (2009) 663-672. [0803.1874]
  4. P. Chakraborty, V. Mathai, The geometry of determinant line bundles in noncommutative geometry, J. Noncommutative Geometry, 3 no.4 (2009) 559-578. [0804.3232v2]
  5. J. Brodzki, V. Mathai, J. Rosenberg, R. Szabo, Noncommutative correspondences, duality and D-branes in bivariant K-theory, Advances in Theoretical and Mathematical Physics, 13 no. 2 (2009) 497-552. [0708.2648]
  6. F. Larusson, Affine simplices in Oka manifolds, Documenta Mathematica, 14 (2009) 691-697, [0905.0532]
  7. F. Larusson, R. Sigurdsson, Siciak-Zahariuta extremal functions, analytic discs and polynomial hulls, Math. Annalen, 345 (2009) 159-174. [0808.3304v1]
  8. F. Larusson, R. Shafikov, Schlicht envelopes of holomorphy and foliations by lines, J. Geometric Analysis, 19 (2009) 373-389.
  9. D.K. Butler and S.G. Barwick. A characterizations of the lines external to a quadric cone of PG(3,q), q odd. Innovations in Incidence Geometry, 8 (2009) 39-48.
  10. S.G. Barwick and D.K. Butler. A Characterisation of the Lines External to an Oval Cone in PG(3,q), q even. J. Geometry, 93 (2009), no. 1-2, 21--27.
  11. S.G. Barwick and D.J. Marshall. Unitals and Replaceable t-nests. Aust. J. Combin., 43 (2009), 115--126..
  12. D. V. Alekseevsky, V. Cortes, A. Galaev and T. Leistner, Cones over semi-Riemannian manifolds and their holonomy, Journal fur die reine und angewandte Mathematik (Crelle's Journal) , 635 (2009), 23-69. [0707.3063]
  13. G. Brown, F. Moricz, Z. Safar, Formal differentiation of absolutely convergent Fourier series and classical function classes. Acta Sci. Math. (Szeged), 75 (2009), no. 1-2, 161--173.

BACK TO THE IGA HOME PAGE